126 research outputs found

    The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: RSD measurement from the power spectrum and bispectrum of the DR12 BOSS galaxies

    Get PDF
    We measure and analyse the bispectrum of the final, Data Release 12, galaxy sample provided by the Baryon Oscillation Spectroscopic Survey, splitting by selection algorithm into LOWZ and CMASS galaxies. The LOWZ sample contains 361\,762 galaxies with an effective redshift of zLOWZ=0.32z_{\rm LOWZ}=0.32, and the CMASS sample 777\,202 galaxies with an effective redshift of zCMASS=0.57z_{\rm CMASS}=0.57. Combining the power spectrum, measured relative to the line-of-sight, with the spherically averaged bispectrum, we are able to constrain the product of the growth of structure parameter, ff, and the amplitude of dark matter density fluctuations, σ8\sigma_8, along with the geometric Alcock-Paczynski parameters, the product of the Hubble constant and the comoving sound horizon at the baryon drag epoch, H(z)rs(zd)H(z)r_s(z_d), and the angular distance parameter divided by the sound horizon, DA(z)/rs(zd)D_A(z)/r_s(z_d). After combining pre-reconstruction RSD analyses of the power spectrum monopole, quadrupole and bispectrum monopole; with post-reconstruction analysis of the BAO power spectrum monopole and quadrupole, we find f(zLOWZ)σ8(zLOWZ)=0.427±0.056f(z_{\rm LOWZ})\sigma_8(z_{\rm LOWZ})=0.427\pm 0.056, DA(zLOWZ)/rs(zd)=6.60±0.13D_A(z_{\rm LOWZ})/r_s(z_d)=6.60 \pm 0.13, H(zLOWZ)rs(zd)=(11.55±0.38)103kms1H(z_{\rm LOWZ})r_s(z_d)=(11.55\pm 0.38)10^3\,{\rm kms}^{-1} for the LOWZ sample, and f(zCMASS)σ8(zCMASS)=0.426±0.029f(z_{\rm CMASS})\sigma_8(z_{\rm CMASS})=0.426\pm 0.029, DA(zCMASS)/rs(zd)=9.39±0.10D_A(z_{\rm CMASS})/r_s(z_d)=9.39 \pm 0.10, H(zCMASS)rs(zd)=(14.02±0.22)103kms1H(z_{\rm CMASS})r_s(z_d)=(14.02\pm 0.22)10^3\,{\rm kms}^{-1} for the CMASS sample. We find general agreement with previous BOSS DR11 and DR12 measurements. Combining our dataset with {\it Planck15} we perform a null test of General Relativity (GR) through the γ\gamma-parametrisation finding γ=0.7330.069+0.068\gamma=0.733^{+0.068}_{-0.069}, which is 2.7σ\sim2.7\sigma away from the GR predictions.Comment: 34 pages, 22 figures, 8 tables. Accepted for publication in MNRAS. Data available at https://sdss3.org//science/boss_publications.ph

    The correlation between halo mass and stellar mass for the most massive galaxies in the universe

    Get PDF
    I.Z. is supported by NSF grant AST-1612085. Funding for the Sloan Digital Sky Survey IV has been provided by the Alfred P. Sloan Foundation, the U.S. Department of Energy Office of Science, and the Participating Institutions. SDSS-IV acknowledges support and resources from the Center for High-Performance Computing at the University of Utah.We present measurements of the clustering of galaxies as a function of their stellar mass in the Baryon Oscillation Spectroscopic Survey. We compare the clustering of samples using 12 different methods for estimating stellar mass, isolating the method that has the smallest scatter at fixed halo mass. In this test, the stellar mass estimate with the smallest errors yields the highest amplitude of clustering at fixed number density. We find that the PCA stellar masses of Chen et al. clearly have the tightest correlation with halo mass. The PCA masses use the full galaxy spectrum, differentiating them from other estimates that only use optical photometric information. Using the PCA masses, we measure the large-scale bias as a function of M∗ for galaxies with log M∗ ≥ 11.4, correcting for incompleteness at the low-mass end of our measurements. Using the abundance matching ansatz to connect dark matter halo mass to stellar mass, we construct theoretical models of b (M∗) that match the same stellar mass function but have different amounts of scatter in stellar mass at fixed halo mass, σlog M∗. Using this approach, we find σlogM∗ =  0.18 -0.02 +0.01. This value includes both intrinsic scatter as well as random errors in the stellar masses. To partially remove the latter, we use repeated spectra to estimate statistical errors on the stellar masses, yielding an upper limit to the intrinsic scatter of 0.16 dex.Publisher PDFPeer reviewe

    The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: Angular clustering tomography and its cosmological implications

    Get PDF
    We investigate the cosmological implications of studying galaxy clustering using a tomographic approach applied to the final BOSS DR12 galaxy sample, including both auto- and cross-correlation functions between redshift shells. We model the signal of the full shape of the angular correlation function, ω(θ)\omega(\theta), in redshift bins using state-of-the-art modelling of non-linearities, bias and redshift-space distortions. We present results on the redshift evolution of the linear bias of BOSS galaxies, which cannot be obtained with traditional methods for galaxy-clustering analysis. We also obtain constraints on cosmological parameters, combining this tomographic analysis with measurements of the cosmic microwave background (CMB) and type Ia supernova (SNIa). We explore a number of cosmological models, including the standard Λ\LambdaCDM model and its most interesting extensions, such as deviations from w_\rm{DE} = -1, non-minimal neutrino masses, spatial curvature and deviations from general relativity using the growth-index γ\gamma parametrisation. These results are, in general, comparable to the most precise present-day constraints on cosmological parameters, and show very good agreement with the standard model. In particular, combining CMB, ω(θ)\omega(\theta) and SNIa, we find a value of w_\rm{DE} consistent with 1-1 to a precision better than 5\% when it is assumed to be constant in time, and better than 6\% when we also allow for a spatially-curved Universe.Comment: 21 pages, 18 figures, accepted for publication MNRAS. The data used in this analysis is publicly available at https://sdss3.org/science/boss_publications.ph

    Properties of Type Ia supernovae inside rich galaxy clusters

    Get PDF
    We used the Gaussian Mixture Brightest Cluster Galaxy catalogue and Sloan Digital Sky Survey-II supernovae data with redshifts measured by the Baryon Oscillation Spectroscopic Survey to identify 48 Type Ia supernovae (SNe Ia) residing in rich galaxy clusters and compare their properties with 1015 SNe Ia in the field. Their light curves were parametrized by the SALT2 model and the significance of the observed differences was assessed by a resampling technique. To test our samples and methods, we first looked for known differences between SNe Ia residing in active and passive galaxies. We confirm that passive galaxies host SNe Ia with smaller stretch, weaker colour–luminosity relation [β of 2.54(22) against 3.35(14)], and that are ∼0.1 mag more luminous after stretch and colour corrections. We show that only 0.02 per cent of random samples drawn from our set of SNe Ia in active galaxies can reach these values. Reported differences in the Hubble residuals scatter could not be detected, possibly due to the exclusion of outliers. We then show that, while most field and cluster SNe Ia properties are compatible at the current level, their stretch distributions are different (∼3σ): besides having a higher concentration of passive galaxies than the field, the cluster’s passive galaxies host SNe Ia with an average stretch even smaller than those in field passive galaxies (at 95 per cent confidence).We argue that the older age of passive galaxies in clusters is responsible for this effect since, as we show, old passive galaxies host SNe Ia with smaller stretch than young passive galaxies (∼4σ).Web of Scienc

    Baryon Acoustic Oscillations in the Ly{\alpha} forest of BOSS DR11 quasars

    Get PDF
    We report a detection of the baryon acoustic oscillation (BAO) feature in the flux-correlation function of the Ly{\alpha} forest of high-redshift quasars with a statistical significance of five standard deviations. The study uses 137,562 quasars in the redshift range 2.1z3.52.1\le z \le 3.5 from the Data Release 11 (DR11) of the Baryon Oscillation Spectroscopic Survey (BOSS) of SDSS-III. This sample contains three times the number of quasars used in previous studies. The measured position of the BAO peak determines the angular distance, DA(z=2.34)D_A(z=2.34) and expansion rate, H(z=2.34)H(z=2.34), both on a scale set by the sound horizon at the drag epoch, rdr_d. We find DA/rd=11.28±0.65(1σ)1.2+2.8(2σ)D_A/r_d=11.28\pm0.65(1\sigma)^{+2.8}_{-1.2}(2\sigma) and DH/rd=9.18±0.28(1σ)±0.6(2σ)D_H/r_d=9.18\pm0.28(1\sigma)\pm0.6(2\sigma) where DH=c/HD_H=c/H. The optimal combination, DH0.7DA0.3/rd\sim D_H^{0.7}D_A^{0.3}/r_d is determined with a precision of 2%\sim2\%. For the value rd=147.4 Mpcr_d=147.4~{\rm Mpc}, consistent with the CMB power spectrum measured by Planck, we find DA(z=2.34)=1662±96(1σ) MpcD_A(z=2.34)=1662\pm96(1\sigma)~{\rm Mpc} and H(z=2.34)=222±7(1σ) kms1Mpc1H(z=2.34)=222\pm7(1\sigma)~{\rm km\,s^{-1}Mpc^{-1}}. Tests with mock catalogs and variations of our analysis procedure have revealed no systematic uncertainties comparable to our statistical errors. Our results agree with the previously reported BAO measurement at the same redshift using the quasar-Ly{\alpha} forest cross-correlation. The auto-correlation and cross-correlation approaches are complementary because of the quite different impact of redshift-space distortion on the two measurements. The combined constraints from the two correlation functions imply values of DA/rdD_A/r_d and DH/rdD_H/r_d that are, respectively, 7% low and 7% high compared to the predictions of a flat Λ\LambdaCDM cosmological model with the best-fit Planck parameters. With our estimated statistical errors, the significance of this discrepancy is 2.5σ\approx 2.5\sigma.Comment: Accepted for publication in A&A. 17 pages, 18 figure

    The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: single-probe measurements from CMASS anisotropic galaxy clustering

    Get PDF
    With the largest spectroscopic galaxy survey volume drawn from the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS), we can extract cosmological constraints from the measurements of redshift and geometric distortions at quasi-linear scales (e.g. above 50 h1h^{-1}Mpc). We analyze the broad-range shape of the monopole and quadrupole correlation functions of the BOSS Data Release 12 (DR12) CMASS galaxy sample, at the effective redshift z=0.59z=0.59, to obtain constraints on the Hubble expansion rate H(z)H(z), the angular-diameter distance DA(z)D_A(z), the normalized growth rate f(z)σ8(z)f(z)\sigma_8(z), and the physical matter density Ωmh2\Omega_mh^2. We obtain robust measurements by including a polynomial as the model for the systematic errors, and find it works very well against the systematic effects, e.g., ones induced by stars and seeing. We provide accurate measurements {DA(0.59)rs,fid/rs\{D_A(0.59)r_{s,fid}/r_s Mpc\rm Mpc, H(0.59)rs/rs,fidH(0.59)r_s/r_{s,fid} kms1Mpc1km s^{-1} Mpc^{-1}, f(0.59)σ8(0.59)f(0.59)\sigma_8(0.59), Ωmh2}\Omega_m h^2\} = {1427±26\{1427\pm26, 97.3±3.397.3\pm3.3, 0.488±0.0600.488 \pm 0.060, 0.135±0.016}0.135\pm0.016\}, where rsr_s is the comoving sound horizon at the drag epoch and rs,fid=147.66r_{s,fid}=147.66 Mpc is the sound scale of the fiducial cosmology used in this study. The parameters which are not well constrained by our galaxy clustering analysis are marginalized over with wide flat priors. Since no priors from other data sets, e.g., cosmic microwave background (CMB), are adopted and no dark energy models are assumed, our results from BOSS CMASS galaxy clustering alone may be combined with other data sets, i.e., CMB, SNe, lensing or other galaxy clustering data to constrain the parameters of a given cosmological model. The uncertainty on the dark energy equation of state parameter, ww, from CMB+CMASS is about 8 per cent. The uncertainty on the curvature fraction, Ωk\Omega_k, is 0.3 per cent. We do not find deviation from flat Λ\LambdaCDM.Comment: 15 pages, 11 figures. The latest version matches and the accepted version by MNRAS. A bug in the first version has been identified and fixed in the new version. We have redone the analysis with newest data (BOSS DR12

    The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey : measuring DA and H at z = 0.57 from the baryon acoustic peak in the Data Release 9 spectroscopic Galaxy sample

    Get PDF
    We present measurements of the angular diameter distance to and Hubble parameter at z = 0.57 from the measurement of the baryon acoustic peak in the correlation of galaxies from the Sloan Digital Sky Survey III Baryon Oscillation Spectroscopic Survey. Our analysis is based on a sample from Data Release 9 of 264 283 galaxies over 3275 square degrees in the redshift range 0.43 < z < 0.70. We use two different methods to provide robust measurement of the acoustic peak position across and along the line of sight in order to measure the cosmological distance scale. We find DA(0.57) = 1408 ± 45 Mpc and H(0.57) = 92.9 ± 7.8 km s−1 Mpc−1 for our fiducial value of the sound horizon. These results from the anisotropic fitting are fully consistent with the analysis of the spherically averaged acoustic peak position presented in Anderson et al. Our distance measurements are a close match to the predictions of the standard cosmological model featuring a cosmological constant and zero spatial curvature.Publisher PDFPeer reviewe

    SDSS-III Baryon Oscillation Spectroscopic Survey data release 12 : galaxy target selection and large-scale structure catalogues

    Get PDF
    The Baryon Oscillation Spectroscopic Survey (BOSS), part of the Sloan Digital Sky Survey (SDSS) III project, has provided the largest survey of galaxy redshifts available to date, in terms of both the number of galaxy redshifts measured by a single survey, and the effective cosmological volume covered. Key to analysing the clustering of these data to provide cosmological measurements is understanding the detailed properties of this sample. Potential issues include variations in the target catalogue caused by changes either in the targeting algorithm or properties of the data used, the pattern of spectroscopic observations, the spatial distribution of targets for which redshifts were not obtained, and variations in the target sky density due to observational systematics. We document here the target selection algorithms used to create the galaxy samples that comprise BOSS. We also present the algorithms used to create large-scale structure catalogues for the final Data Release (DR12) samples and the associated random catalogues that quantify the survey mask. The algorithms are an evolution of those used by the BOSS team to construct catalogues from earlier data, and have been designed to accurately quantify the galaxy sample. The code used, designated mksample, is released with this paper.Publisher PDFPeer reviewe

    Type Ia Supernova Properties as a Function of the Distance to the Host Galaxy in the SDSS-II SN Survey

    Full text link
    We use type-Ia supernovae (SNe Ia) discovered by the SDSS-II SN Survey to search for dependencies between SN Ia properties and the projected distance to the host galaxy center, using the distance as a proxy for local galaxy properties (local star-formation rate, local metallicity, etc.). The sample consists of almost 200 spectroscopically or photometrically confirmed SNe Ia at redshifts below 0.25. The sample is split into two groups depending on the morphology of the host galaxy. We fit light-curves using both MLCS2k2 and SALT2, and determine color (AV, c) and light-curve shape (delta, x1) parameters for each SN Ia, as well as its residual in the Hubble diagram. We then correlate these parameters with both the physical and the normalized distances to the center of the host galaxy and look for trends in the mean values and scatters of these parameters with increasing distance. The most significant (at the 4-sigma level) finding is that the average fitted AV from MLCS2k2 and c from SALT2 decrease with the projected distance for SNe Ia in spiral galaxies. We also find indications that SNe in elliptical galaxies tend to have narrower light-curves if they explode at larger distances, although this may be due to selection effects in our sample. We do not find strong correlations between the residuals of the distance moduli with respect to the Hubble flow and the galactocentric distances, which indicates a limited correlation between SN magnitudes after standardization and local host metallicity.Comment: Accepted for publication in The Astrophysical Journal (33 pages, 5 figures, 8 tables
    corecore